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We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We
propose an iterative construction of quasiperiodic potentials from sequences of potentials
with increasing spatial period. At each finite iteration step, the eigenstates reflect the
properties of the limiting quasiperiodic potential properties up to a controlled maximum
system size. We then observe approximate Metal-Insulator Transitions (MIT) at the
finite iteration steps. We also report evidence on mobility edges, which are at variance to
the celebrated Aubry—André model. The dynamics near the MIT shows a critical slowing
down of the ballistic group velocity in the metallic phase, similar to the divergence of
the localization length in the insulating phase.
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1. Introduction

Wave localization in random potentials has been intensively studied ever since its
prediction by Anderson in the year 1958.! Notably uncorrelated random potentials
in space dimension d = 1 will lead to complete localization. Metal-Insulator Transi-
tions (MIT) and possible mobility edges (energies separating delocalized (metallic)
from localized (insulating) eigenstates) will typically appear in systems with space
dimension d = 3. Later studies of potentials with correlated disorder have shown
that the dimension restriction for an MIT can be lowered to d = 1 if there are
sufficiently strong correlations in the disorder potential.?

It came as a surprise that the quasiperiodic potential introduced by Aubry and
André (AA) in 1980, allowed an MIT when d = 1.% This MIT is tuned by the
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strength A of a cos(2wal) potential whose period 1/« is irrational and therefore
incommensurate with the lattice spacing A¢ = 1. Analytical results were obtained
thanks to a duality principle relating states and spectra in direct and Fourier space.
This very principle prevents the appearance of mobility edges. The MIT between
extended or localized states of the AA model is not dependent on the eigenenergy
but only on the potential strength A. Attempts to generalize these results to other
quasiperiodic potentials for d = 1, showed that the localized regime could be main-
tained irrespective of the potential strength.* Further, Fibonacci sequence based
potentials kept the system at the critical point®® and a mix of two AA potentials
with different periods, also known as the bichromatic quasiperiodic lattice, allowed
the appearance of a mobility edge.”® A recent study of two interacting particles in
the AA model, established the appearance of metallic correlated bound states deep
in the insulating regime for a single particle.!”

Experimental studies on light propagating through optical waveguide networks!!
and ultracold atomic clouds expanding in optical potentials'? successfully tested
the MIT within the AA model. The flexibility in the choice of potentials within
these studies makes them ideal testing grounds for other quasiperiodic potentials.
A discussion about possible experimental observations of the mobility edge in the
bichromatic lattice can be found in Ref. 8. At the same time these systems have
finite size and have unavoidable precision limitations on the generated potentials.'3
Desired effects like the MIT or mobility edges are therefore needed only up to that
precision, and only to be observable on these length scales, see also Ref. 9.

In this paper, we present a systematic and constructive way to approximate a
quasiperiodic potential by a periodic one. Each approximation is defined both by
its period and by the convergence criteria of the amplitude sequence of higher har-
monics. This flexibility allows us to obtain a wide variety of quasiperiodic potentials
which can be expected to exhibit the above phenomena. In addition, the experi-
mentally relevant length scale can be easily taken into account by the corresponding
periodic approximation of a quasiperiodic potential.

The paper is structured as follows: in Sec. 2, we briefly discuss the AA model
and some lesser-known properties of wave packet spreading. Section 3 introduces
the construction principle for the new class of quasiperiodic potentials. Section 4
discusses the main properties of localized and extended states for particular ampli-
tude sequences. Finally we conclude and summarize.

2. Aubry—André Model

Consider the d = 1 dimensional discrete Schrodinger operator H : (2(Z) — (*(Z),
also known as AA model, defined by

(HY) = ehr + i1 +hi-1, 1EZ, (1)
with quasiperiodic potential
e = Acos(2m(al + B)), aeR\Q, (2)
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eigenenergy

Fig. 1. Spectrum o of the AA model when a = (v/5 —1)/2.

with a positive real strength A > 0, 8 € R and irrational «.* Due to the self-
dual character at A = 2, the model exhibits a transition between a metallic phase
for A €]0,2[ and an insulating phase when A €]2,+o0[. It is also well-known as
for Ref. 3 that, for any given A in the insulating phase, all normal modes decay
exponentially in space as e~/¢, with the localization length & = 1/In(\/2) being
independent of the eigenenergy.

The eigenenergy spectrum oy («, 3) of the AA model has a Cantor set structure
for all A # 0.1 When the incommensurate parameter is chosen as the golden mean
a = (v/5 — 1)/2, the spectrum exhibits a self-similar structure, which consists of
three bands, each of which again consists of three sub-bands and so forth (Fig. 1).
The self-similar structure does not depend on 3. The Lebesgue measure!®
found analytically by the formula

can be

u(on) =202 — Il

For A €]0,2[ (metallic phase), the model has absolutely continuous spectrum,'6

while for A €]2,+o0[ (insulating phase) it is a purely point spectrum.!” At the
critical value A = 2, the spectrum is purely singular continuous.'® The spectrum’s
fractal dimension has been the object of several studies, in particular at the critical
value. For \ # 2 in 1986 Tang et al.'® showed that the fractal measure is 1. Instead,

19-21

at the critical value A = 2, former studies show that the fractal dimension is 0.5.

Note that our working golden mean value for « is covered by the above statements.

22,23

Latter works show that 0.5 is in fact an upper bound, and find classes of

irrational numbers « for which the correspondent spectrum’s fractal dimension is
lower than 0.5.

2We explicitly exclude rational values of o from our considerations.
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Remarkably, there are much more exact results for the spectral properties of the
AA model, as compared to the dynamical properties of wave packet spreading

i = (HY)y, (3)

where the numerical results are known.13:23,24

Consider a single site excitation for a normalized wave function Y, [¢y* = 1.
Its evolution in time leads to a time-dependent distribution n;(t) = [1;(t)|?. The
dynamics can be characterized by the second moment mo = >_,(1 — >°, kng)?ny,
which in a delocalized regime is expected to grow algebraically in time mgy ~ t7
with real exponent . For the case of the golden mean, we can distinguish three

different notable spreading regimes'32%:

vgt2 Ballistic Spreading,
ma ~ ¢ Dt Diffusive Spreading,

£2 Localization

where the coefficients are: the group velocity vy, the diffusion coefficient D and
the localization length £. In particular, spreading is expected to be ballistic in the
metallic regime A\ < 2 and diffusive at the critical point A\ = 2.13:24 Other studies?
showed cases where at the critical value the spreading is slightly subdiffusive (with
v < 1). Further interesting issues concerning the connection between the spectral
measure, the fractal dimension, temporal correlations and the diffusive growth.2°
We plot our calculations of the time evolution of the second moment for the different
regimes in Fig. 2.

Loglo m,

Loglot

Fig. 2. (Color online) The second moment mo for a single site excitation as a function of time
in a log-log plot. From top to bottom: A = 0.5 (red), A = 1.5 (black), A = 1.9 (green), A = 1.97
(orange), A = 2 (blue), A = 2.05 (brown) and XA = 2.5 (violet). The dashed-dotted lines indicate
power laws mo ~ t (diffusive) and ms ~ 2 (ballistic). Here a = (/5 — 1)/2 and 3 = 0.
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Fig. 3. (Color online) The dependence of the group velocity vg on 1/(2— \) in the metallic phase
in a log—log plot. The symbols are the actual computed values, the dashed line corresponds to the
law vg ~ (2 — \)2.

We see that for A\ = 2 spreading appears to be diffusive..!324 However we can
not exclude a slightly subdiffusive spreading with v ~ 0.95 as reported in Ref. 23.
We also confirm the predicted ballistic asymptotics in the metallic regime and
localization in the insulating regime. However, we also observe a diffusive transient
in these regimes, which becomes longer, the closer one gets to the critical point.
We compute the group velocity vy, which is given by the square root of my up to
a constant prefactor, and plot it in Fig. 3. We find that it vanishes at the critical
point as vy ~ (2 — \)2.

It remains an intriguing task to explain these spreading regimes in their relation
to the Cantor spectrum of the model. This concerns in particular, the crossover time
Tx, the critical exponent for v, and the question why spreading into a large but
finite localization volume in the insulating regime happens to be diffusive and not
ballistic, as for one-dimensional uncorrelated disorder (Ref. 26). These observations
may be rather special features of the highly symmetric AA model which enjoys
duality.

3. Cantor-Like Constructions of a Class of Quasiperiodic
Potentials

We now construct quasiperiodic potentials in a systematic way, approximating them
by periodic potentials at each iteration step. The standard construction of a 1/3
Cantor set (cut out the middle third of an interval, then repeat with the remain-
ing subintervals ad infinitum) gives a set of measure zero and nonzero Hausdorff
dimension log 2/log 3. Here we modify this procedure for the eigenenergy spectrum
effectively, by stretching and changing the cutting ratio. This is all achieved by
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defining sequences of periodic potentials with increasing spatial period. For sim-
plicity, we shall start with an example which has a three band structure (where
each band, again subdivides into three sub-bands etc.) similar to the golden mean
case of the AA spectrum before we generalize.

3.1. The scheme

Consider a sequence of discrete periodic functions Fy (1) with k =1,2,3,.... Each
function is periodic with spatial period Ly, = 3*: Ej. (I + L) = Ex(l). The function
F4 has period L; = 3 and is defined for [ € Z and for a real positive value a; by

—ay | =3m,
Ei(l)=<0 l=3m+1, meZ,
‘a1 =3m+2.

and it has the schematic form represented in Fig. 4.

ay ° ° ° °
B S B B =
—ar® . o . lez

Fig. 4. Schematic picture of the potential E1 for a real positive value aj.

The second function E5 has period Lo = 9 and is defined for [ € Z and for a
real positive value as by
—az 1=9m+{0,1,2},
Ey(1)=<0 l=9m+{3,4,5}, meZ,
+as 1=9m+{6,7,8}.

and it has the schematic form represented in Fig. 5.

asz ® 0 @
B e e
—ag® * L L] * o l c Z

Fig. 5. Schematic picture of the potential F2 for a real positive value as.

Higher order functions Eg(l) are defined in a similar way for [ € Z and are
characterized by the corresponding real positive amplitude ag:

—a, if l=3*m+gq,
Ey()=40 if 1=313m+1)+q, mez,
+ap if 1 =3F13m+2) +q,

with 0 < ¢ < 3F! — 1, and their schematic form is represented in Fig. 6.
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Fig. 6. Schematic picture of the potential Ej, for a real positive value aj.

Now we consider the superposition of all Ey(l) for all 1 < k < K:

K
El,K:AZEk(l)a VieZ, (4)
k=1

where A > 0 is again the potential strength parameter. The potential ¢ x is periodic
with period Lg. For example, for K = 2 we obtain a potential of period L, = 9:
€12 = Eq(1) + E2(1) with the spatial profile represented in Fig. 7.

o leZ

Fig. 7. Schematic picture of the potential F1 + E3 for the real positive value a1 and as.

The same construction could be done for sequences of periodic functions Ej, (1)
with k = 1,2,3,... of spatial period Ly s = s* with s € N: Ej (I + Ly.s) = Exs(1).
We can simplify notations by using the definition [l],, = {modm to arrive at

Bt = (|5 | - [3]) s = v, iez,

defined for ay a real positive number. The bracket |-| denotes the integer part of a
real number. The final expression for the potential ¢, x defined in Eq. (4) is

K
€k K ::)\Z(ﬂk’s(l)ak, VieZ, (5)
k=1

where {a}X_ | is the generating sequence of the potential and {¢x s(I)}5_, the
partitioning sequence.

In the absence of any potential ¢;, the spectrum of the operator [Eq. (1)] is given
by one band ¢ = 2cosp where p is a Bloch wave number. For K = 1 and in the
case s = 3, the spectrum splits into three bands which are separated by two gaps.
The first step in the above construction therefore, cuts two segments out of the one
band spectrum. At the next step of the approximation K = 2, the spatial period
Lo = 9 and the spectrum consists now of 9 bands and 8 gaps. Therefore, each of
the three bands of the K = 1 spectrum is split into three narrower ones, with the
new subgaps, removing parts of the K = 1 bands. At the same time, the bands
edges may also shift, thus we obtain a Cantor-like iterative construction.
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3.2. The quasiperiodic limit

We now push the iterative construction to its limit by extending Eq. (5) to an
infinite sum

+o00
a=\Y or.lar,l €. (6)
k=1
The finiteness of this sum depends on the convergence properties of the generating
sequence. We make the following definition: a sequence {¢;}iez is quasiperiodic if
for every ¢ > 0, there is T'= T'(§) > 0 such that for all I € Z we have |e;+7 — €| < 9.
We have the following.

Lemma 1. Let’s consider a family {{ef}icz} 25 of potentials and suppose that for
each k the sequence {€f}icz is periodic with period Ly and the tails satisfy

o0
lim sup E e =0.
N—

X UEL TN

Then the sequence {€ }icz defined by the sum

(oo}

gl:ZGf, (7)

k=0

s quasiperiodic.

The proof is simply to observe that any partial sum Zf::o ef is periodic with
period T = lem(L1, Lo, ..., Ly) (here lem means least common multiple) and
that the tail sums Z,;“; N ef are uniformly small, independent of [. So, for a given
0 > 0, we choose N = N(J) such that

> 1)
sup Z ef < =
ez, 2
k=N+1
It follows that V1 € Z we have
N “+o0
~ ~ k k
€ty — &l = ZEHTN + Z €Ty
k=0 k=N+1
N +oo 5
k k
— € — €1 <2-==96.
D= D 5
k=0 k=N+1

The property of quasiperiodicity stated above holds for the potential € stated in
Eq. (7). This ends the proof of the lemma.

As a direct corollary, we see that the potential defined by Eq. (6) is quasiperiodic.
Thus the above class of potentials, which is defined by its generating sequence
{ar};25 and the choice of the integer s of the partitioning sequence {¢ s(1)};2],
is quasiperiodic.
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Fig. 8. Model A. The eigenenergy spectrum versus p. Here s =3, A=1and K = 9.

4. Numerical Results

In this section, we first analyze a particular case A of potentials, defined by the
geometric sequence ay = p* (Model A), for a real value p €]0,1[ and s = 3

K
k=AY draDpt, VieZ. ®)
k=1

First we consider A = 1.

In Fig. 8, we show how the spectrum changes for different potential strength
parameter p €10, 1[. For p values from 0 to 0.5, the width of the spectrum and its
sub-band shrinks and then, for p > 0.5 it starts to stretch. A similar effect is seen
in the AA model spectrum around the transition value A = 2.

To characterize localization of the corresponding eigenstates, we compute the
participation number P = 1/ 3", |¢|* of each eigenmode (¢/;);cz and consider the
maximum P,y for a given u.

We find that Pl drops down to zero around p = 0.5, irrespective of the
used system size (Fig. 9). These graphs suggest that at p < 1/2, some eigenstates
become extended and therefore the insulating regime is lost. Calculations for other
A > 0 show how this threshold value of the loss of the insulating regime evolves
continuously along the set of parameters (u, A\) €]0,1[x ]0,+o00[. The outcome is
shown in Fig. 10, where the MIT curve limits the red shaded area in which the
metallic delocalized states appear.

A similar MIT arises for model B with the potential [Eq. 6)] using an algebraic
generating sequence ay = 1/k":

K
1
El,K:AZ¢k73(Z)k—V7 VieZ. (9)
k=1
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Fig. 9. (Color online) Model A. Inverse of the largest participation number Ppax versus p for
N = 1000, 2000, 3000, 4000, 5000. Here s =3, A=1 and K = 9.

40

35

30 insulating

25 regime
< 20
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0 0.2 0.4 0.6 0.8 1
n

Fig. 10. (Color online) The phase diagram of model A with potential [Eq. (8)]. The red shaded
area corresponds to the metallic regime (extended eigenstates exist). Here s = 3 and K = 9.

20

insulating

15 regime

Fig. 11. (Color online) The phase diagram of model B with potential [Eq. (9)]. The red shaded
area corresponds to the metallic regime (extended eigenstates exist). Here s = 3 and K = 9.
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0.3 0.4 0.5 0.6
u

Fig. 12. (Color online) Model A. Curves of Inverse of the largest participation number Prax
versus p €]0.25,0.6[ for N = 5000 for five evergy subintervals. From bottom to top: 0 < F < 0.31
(red), 0.31 < E < 1 (brown), 1 < E < 1.58 (green), 1.58 < E < 1.92 (blue), 1.92 < E < 2.5
(vellow). Here s =3, A=1and K = 9.

0.5E
045 5= .
3 04E= = -
0.35 —_— = Mcmni: —
0.3 : ‘ ‘ =
0 0.5 1 1.5 2 2.5

eigenenergy

Fig. 13. (Color online) Model A. A zoom of the eigenenergy spectrum versus p from Fig. 8. The
mobility edge is indicated by the thick dashed red line. Here s =3, A=1 and K = 9.

for a real value v €1, +o0[. Its phase diagram is shown in Fig. 11.

Returning to model A, we compute again for A = 1 the participation number P
of eigenstates for different values i €]0.25,0.6[. Now we consider energy intervals
which correspond to various sub-bands of the spectrum (see caption in Fig. 12). In
each of these intervals we choose the largest value of Py . and plot its inverse as a
function of p in Fig. 12.

We find that the MIT transition values of u and the sharpness of the transition
depend on the chosen energy sub-band. Therefore we observe energy-dependent
MIT values of p, i.e., an energy-dependent mobility edge in Fig. 13.

Next we study the dynamics for the model A (similar to the AA case). We
compute the time evolution of the second moment moy for a single site excitation
for different values p of the generating sequence in the interval |0, 1[ (Fig. 14).

We find that the basic properties of the AA model are qualitatively recovered.
For small values p ~ 0.05 — 0.1 the spreading is close to ballistic. An increase of
changes the dynamics: an increasingly long transient region of slower spreading is
emerging. At pu = 0.5, the dynamics is close to diffusive, up to the largest times of

1550036-11



C. Danieli et al.

8 T —
m2~t2 VY %
; T
7 oMyt
6 I~ /I ,,/ —
7 -
/ 2
Z, /’
7 2
[\l 7, 4
EO /'/
- ‘ -
on 4 /"
1) K
p—
7
2 ’W\‘."’M
/
O i | |
0 2 4 6
log,t

Fig. 14. (Color online) Model A. The second moment mg for a single site excitation as a function
of time in a log—log plot. From top to bottom: g = 0.05 (red), pu = 0.29 (black), p = 0.4 (green),
w1 = 0.43 (indigo), p = 0.47 (magenta), p = 0.5 (blue), p = 0.55 (dark green), p = 0.575 (celeste),
w1 = 0.6 (orange), u = 0.65 (brown) and p = 0.7 (purple). The dashed-dotted lines indicate power
laws mo ~ t (diffusive) and mo ~ t2 (ballistic). Here s =3, A = 1 and K = 9.

computation. A more in-depth analysis of these dynamical processes can be rather
interesting and complicated, especially in the parameter region of the mobility edge
0.3 < p < 0.5, where extended states coexist with localized states with arbitrary
large localization length. For p closer to 1, the wave dynamics shows spreading into
a finite volume, which will imply localization.

5. Summary

We obtained an iterative construction of quasiperiodic potentials from sequences
of potentials with increasing spatial period. At each finite iteration step, the eigen-
states reflect the properties of the limiting quasiperiodic potential properties, up to
a controlled maximum system size. We observe approximate MIT at finite iteration
steps. We observe mobility edges, at variance to the celebrated AA model. The dy-
namics near the MIT, shows a critical slowing down of the ballistic group velocity
in the metallic phase. An important open question concerns the existence of suit-
able choices of the generating sequence, (and even different periodic modulations)
so that the model has a duality principle. In particular it would be interesting to
find such a special choice which will reobtain the AA case. Further, we point to the
mathematical observation in Ref. 27 and its physical interpretation in Ref. 28, that
few-body Hamiltonians obtained on the base of one-body Hamiltonians with sin-
gular spectrum, may have absolutely continuous branches in their spectrum. This
may correlate with the numerical observation of such branches in Ref. 10. The pre-
sented potential construction algorithm may be of use for future studies in these
directions.
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